Miniature Rechargeable Battery for bion® Microstimulator

Khalil Amine and Qingzheng Wang
Electrochemical Technology Program, Chemical Engineering Division, Argonne National Laboratory

Introduction

☐ bion® Microstimulator

- A battery-powered microstimulator (manufactured by Advanced Bionics*)
- Implanted next to peripheral nerves to restore function and/or provide electrical stimulation therapy (Fig.1)
- ☐ Current battery technology employed
 - · Lithium ion battery using organic-solvent-based electrolytes
 - Problems: battery life; safety (possibility of flammable electrolyte leakage)

Challenges

- Battery calendar life
 - More than 10 years at human body temperature
- Safety
 - Stable, nonflammable and non-toxic electrolyte

Argonne's Approach

- Develop siloxane-based electrolytes
 - Nonflammable, thermally and electrochemically stable, non-volatile, and less toxic
 - Polymer electrolytes (Fig. 2) avoid leakage problems
- Battery chemistry optimization for siloxane-based system
 - Electrode material and engineering
 - Operating conditions

Results

- □ Very good conductivity of around 6 x 10⁻⁴ S/cm for the siloxane polymer electrolytes (Fig. 3)
- □ Safety: no reaction up to 360°C while conventional electrolyte is stable only to 150°C in the battery (Fig. 4)
- Performance stability: better capacity retention than lithium-ion technology at human body temperature (Fig. 5)
- ☐ Lifetime of more than 12 years is predicted based on current performance data

Potential Benefits of This Technology

- Potential beneficiaries
 - An estimated 50 million people in the U.S. suffer from conditions that may benefit from treatment with microstimulators (see Fig. 1).
- Potential market
 - The total worldwide market for neurostimulation devices is estimated to be \$1.6 billion in 2004 and is expected to grow substantially over the next several years, reaching approximately \$3.8 billion by 2010.

Urinary Urge Incontinence 18 mm (CE Mark in Europe; in U.S. clinical trials **Battery** Eyelid **BMS** Droop Microstimulator Impaired Neurostimulation Function Fig. 1. Some of the potential applications for the Muscular battery-powered bion® microstimulator Impairment

Fig. 2. The siloxane polymer electrolyte may extend battery life to more than 12 years at human body temperature.

Fig. 4. Safety Comparison: siloxane electrolytes are stable up to 360°C with almost no heat generation, while the organic-solvent-based electrolytes begin reacting at 150°C and generate significant heat. (ARC data from siloxane polymer electrolytes vs. LiPF6/EC:DEC in the presence of lithium metal.)

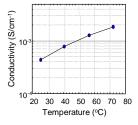


Fig. 3. Conductivity of siloxane electrolyte at various temperatures.

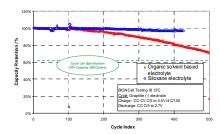


Fig. 5. Comparison of cycling performance of battery cells at 37°C: siloxane electrolyte and organic-solvent-based electrolyte.

The development of the miniature rechargeable battery is a collaborative project between Argonne, Quallion LLC, the University of Wisconsin and the Alfred Mann Foundation. The battery management system was developed jointly by the Alfred Mann Foundation and Advanced Bionics.

[&]quot; bion®" is a registered trademark of Advanced Bionics Corporation